Twist induces epithelial-mesenchymal transition in cervical carcinogenesis by regulating the TGF-β/Smad3 signaling pathway.

نویسندگان

  • Qiong Fan
  • Mei-Ting Qiu
  • Zhu Zhu
  • Jin-Hua Zhou
  • Limo Chen
  • Ye Zhou
  • Wei Gu
  • Li-Hua Wang
  • Zhu-Nan Li
  • Ying Xu
  • Wei-Wei Cheng
  • Dan Wu
  • Wei Bao
چکیده

Epithelial-mesenchymal transition (EMT) is associated with the metastasis and poor prognosis of cervical cancer. However, the underlying mechanisms are poorly defined. In the present study, we investigated whether Twist plays a direct role in human cervical cancer using immunohistochemical and western blot analyses. Immunohistochemical analysis revealed that Twist is highly expressed in cervical cancer, which correlates with poor tumor pathological differentiation or lymph node metastasis (P<0.05). Depletion of Twist by stable shRNA-mediated knockdown decreased the migratory ability of cancer cell lines in vitro. Suppression or overexpression of Twist also resulted in an altered expression of the molecular mediators of EMT. Furthermore, exogenous TGF-β promoted EMT by upregulating the expression of Twist through the TGF-β/Smad3 pathway, and this effect was eliminated by Twist depletion in cancer cells as demonstrated in the in vitro study. The use of in vivo models revealed a decreased tumor proliferation potential in Twist-depleted cancer cells. The results suggested a novel function for Twist in the promotion of EMT via TGF-β/Smad3 signaling pathway. Thus, Twist constitutes a potential therapeutic target in human cervical cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition

The best characterized signaling pathway downstream of transforming growth factor β (TGF-β) is through SMAD2 and SMAD3. However, TGF-β also induces phosphorylation of SMAD1 and SMAD5, but the mechanism of this phosphorylation and its functional relevance is not known. Here, we show that TGF-β-induced SMAD1/5 phosphorylation requires members of two classes of type I receptor, TGFBR1 and ACVR1, a...

متن کامل

Curcumin and Emodin Down-Regulate TGF-β Signaling Pathway in Human Cervical Cancer Cells

Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are...

متن کامل

LAT-derived microRNAs in HSV-1 target SMAD3 and SMAD4 in TGF-β/Smad signaling pathway

Background: During its latent infection, HSV-1 produces only a miRNA precursor called LAT, which encodes six distinct miRNAs. Recent studies have suggested that some of these miRNAs could target cellular mRNAs. One of the key cell signaling pathways that can be affected by HSV-1 is the TGF-β/Smad pathway. Herein, we investigated the potential role of the LAT as well as three LAT-derived miRNAs ...

متن کامل

MIR-99a and MIR-99b Modulate TGF-β Induced Epithelial to Mesenchymal Plasticity in Normal Murine Mammary Gland Cells

Epithelial to mesenchymal transition (EMT) is a key process during embryonic development and disease development and progression. During EMT, epithelial cells lose epithelial features and express mesenchymal cell markers, which correlate with increased cell migration and invasion. Transforming growth factor-β (TGF-β) is a multifunctional cytokine that induces EMT in multiple cell types. The TGF...

متن کامل

Naringenin Decreases Invasiveness and Metastasis by Inhibiting TGF-β-Induced Epithelial to Mesenchymal Transition in Pancreatic Cancer Cells

Epithelial to mesenchymal transition (EMT) promotes cellular motility, invasiveness and metastasis during embryonic development and tumorigenesis. Transforming growth factor-β (TGF-β) signaling pathway is a key regulator of EMT. A lot of evidences suggest that this process is Smad3-dependent. Herein we showed that exposure of aspc-1 and panc-1 pancreatic cancer cells to TGF-β1 resulted in chara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 34 4  شماره 

صفحات  -

تاریخ انتشار 2015